Volume 29 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LUO J L, ZHAO Y H, YU J G, WANG N, XUE L H, YANG L Z. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582−1591 doi: 10.13930/j.cnki.cjea.201019
Citation: LUO J L, ZHAO Y H, YU J G, WANG N, XUE L H, YANG L Z. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582−1591 doi: 10.13930/j.cnki.cjea.201019

Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice

doi: 10.13930/j.cnki.cjea.201019
Funds:  The study was supported by the National Natural Science Foundation of China (41601261) and the Natural Science Foundation of Jiangsu Province (BK20201240).
More Information
  • Corresponding author: E-mail: wang.ning4113@163.com
  • Received Date: 2020-12-30
  • Accepted Date: 2021-03-15
  • Available Online: 2021-07-26
  • Publish Date: 2021-09-06
  • Soil microbial biomass carbon and nitrogen (SMBC and SMBN, respectively) are key factors that characterize soil fertility and its’ change. The rhizosphere is a hotspot of microbial interactions in rice fields. Rhizosphere microbiota are important for rhizosphere ecology and are the impetus of soil organic matter and nutrient transformation. This study investigated bulk and rhizosphere SMBC and SMBN in paddy soils in response to wheat straw addition and different amounts of nitrogen fertilizer application in the typical rice and wheat rotation areas of the middle and lower reaches of the Yangtze River. There were four treatments (in triplicate): no straw or nitrogen fertilizer (CK), straw addition (SN0), straw and low nitrogen fertilizer addition (SN1), and straw and high nitrogen fertilizer addition (SN2). The results showed that, compared to CK, the SMBC contents in the SN0 rhizosphere and bulk of high sandy soil increased by 40.3% and 48.1%, respectively, while those in yellow mud soil increased by 95.7% and 75.4%, respectively. The SMBN contents in the rhizosphere of high sandy soil did not change significantly, but decreased by 19.9% in bulk soil. The SMBN contents in the rhizosphere and bulk of SN0-treated yellow mud soil decreased by 19.5% and 49.0%, respectively. Low nitrogen fertilizer application significantly increased the SMBC content in the rhizosphere of sandy soil and the bulk of yellow mud soil and increased the SMBN content in the rhizosphere and bulk of both soils. With increased nitrogen fertilizer application, SMBC and SMBN contents in the rhizosphere and bulk of both soils significantly increased. Compared with SN0, the SMBC content in the rhizosphere of SN1 in sandy soil increased by 5.1%, that in bulk decreased by 12.9%, and that in the bulk of yellow mud soil increased by 11.1%. There was no significant change in SMBC content in the rhizosphere of yellow mud soil. SN1 treatment led to an increase in the SMBN contents of the rhizosphere and bulk of sandy soil by 17.3% and 9.8%, respectively, and an increase in the SMBN contents of the rhizosphere and bulk of yellow mud by 36.1% and 68.9%, respectively. SN2 treatment led to an increase in the SMBC content in the sandy soil rhizosphere and bulk by 8.6% and 39.3%, respectively, and by 34.58% and 3.05% in yellow mud, respectively, over those of SN0. For the SN2 treatment, sandy soil rhizosphere and bulk SMBN increased by 27.0% and 13.5%, respectively, and they increased by 25.6% and 232.9%, respectively, in yellow mud soil, compared with SN0. These comprehensive analyses show that nitrogen fertilizer addition can increase the SMBC and SMBN contents in bulk and rhizosphere soils, thereby improving soil nutrient availability. Straw returning with nitrogen fertilizer greatly improves soil fertility and promotes crop growth in the rice-wheat rotation areas of the middle and lower reaches of the Yangtze River.
  • loading
  • [1]
    WANG W, LAI, D Y F, WANG C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil & Tillage Research, 2015, 152: 8−16
    [2]
    BECKER M, ASCH F, MASKEY S L, et al. Effects of transition season management on soil N dynamics and system N balances in rice-wheat rotations of Nepa[J]. Field Crops Research, 2007, 103(2): 98−108 doi: 10.1016/j.fcr.2007.05.002
    [3]
    SHINDO H, NISHIO T. Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique[J]. Soil Biology & Biochemistry, 2005, 7: 425−432
    [4]
    HUANG Y, ZOU J W, ZHENG X H, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C∶N ratios[J]. Soil Biology & Biochemistry, 2004, 36: 973−981
    [5]
    王改玲, 郝明德, 陈德立. 秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J]. 植物营养与肥料学报, 2006, 12(6): 840−844 doi: 10.3321/j.issn:1008-505X.2006.06.014

    WANG G L, HAO M D, CHEN D L. Effect of stubble incorporaton and nitrogen on denitrifocation and nitrous oxide emission in an irrigated maize soil[J]. Journal of Plant Nutrition and Fertilizer, 2006, 12(6): 840−844 doi: 10.3321/j.issn:1008-505X.2006.06.014
    [6]
    ZHANG P, WEI T, LI Y L, et al. Effects of straw incorporation on the stratification of the soil organic C, total N and C∶N ratio in a semiarid region of China[J]. Soil & Tillage Research, 2015, 153: 28−35
    [7]
    马想, 黄晶, 赵惠丽, 等. 秸秆与氮肥不同配比对红壤微生物量碳氮的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1574−1580 doi: 10.11674/zwyf.18163

    MA X, HUANG J, ZHAO H L, et al. Straw and nitrogen fertilizer ratios influence microbial biomass carbon and nitrogen in red soil[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(6): 1574−1580 doi: 10.11674/zwyf.18163
    [8]
    曹慧, 杨浩, 孙波, 等. 不同种植时间菜园土壤微生物生物量和酶活性变化特征[J]. 土壤, 2002, (4): 197−200 doi: 10.3321/j.issn:0253-9829.2002.04.005

    CAO H, YANG H, SUN B, et al. Variation characteristics of soil microbial biomass and enzyme activity in vegetable garden at different planting time[J]. Soils, 2002, (4): 197−200 doi: 10.3321/j.issn:0253-9829.2002.04.005
    [9]
    JENKINSON D S. Determination of microbial biomass carbon and nitrogen in soil. Wilson J R. Advances in nitrogen cycling in agricultural ecosystems[J]. Wallingford, England: CAB International, 1988: 368−386
    [10]
    胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(Z1): 1161−1167

    HU C J, LIU G H, WU Y Q. A review of soil microbial biomass and diversity measurements[J]. Journal of Ecologial Environment, 2011, 20(Z1): 1161−1167
    [11]
    王淑英, 樊廷录, 丁宁平, 等. 长期施肥下黄土旱塬黑垆土供氮能力的变化[J]. 植物营养与肥料学报, 2015, 21(6): 1487−1495 doi: 10.11674/zwyf.2015.0614

    WANG S Y, FAN T L, DING N P, et al. Changes of soil nitrogen supply in black loessial in Loess Plateau under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1487−1495 doi: 10.11674/zwyf.2015.0614
    [12]
    俞慎, 李振高. 熏蒸提取法测定土壤微生物量研究进展[J]. 土壤学进展, 1994, 22(6): 42−50

    YU S, LI Z G. Research progress on the determination of soil microbial biomass by fumigation extraction method[J]. Progress in Soil Science, 1994, 22(6): 42−50
    [13]
    张丹, 付斌, 胡万里, 等. 秸秆还田提高水稻–油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报, 2017, 33(9): 133−140 doi: 10.11975/j.issn.1002-6819.2017.09.017

    ZHANG D, FU B, HU W L, et al. Straw returning improves soil nitrogen fixation and crop yield in rice rape rotation[J]. Journal of Agricultural Engineering, 2017, 33(9): 133−140 doi: 10.11975/j.issn.1002-6819.2017.09.017
    [14]
    唐晓雪, 刘明, 江春玉, 等. 不同秸秆还田方式对红壤性质及花生生长的影响[J]. 土壤, 2015, 47(2): 324−328

    TANG X X, LIU M, JIANG C Y, et al. Effects of different ways of straw returning on red soil properties and peanut growth[J]. Soils, 2015, 47(2): 324−328
    [15]
    陆雅海, 张福锁. 根际微生物研究进展[J]. 土壤, 2006, 38(2): 113−121 doi: 10.3321/j.issn:0253-9829.2006.02.001

    LU Y H, ZHANG F S. Research progress of rhizosphere microorganism[J]. Soils, 2006, 38(2): 113−121 doi: 10.3321/j.issn:0253-9829.2006.02.001
    [16]
    蔡晓红, 杨京平, 马维娜, 等. 稻田根际微生物生物量碳与水分、氮素影响效应分析[J]. 浙江大学学报: 农业与生命科学版, 2008, 34(6): 662−668

    CAI X H, YANG J P, MA W N, et al. Effects of nitrogen supply levels and water schemes on rice rhizosphere microbial biomass carbon in rice development stage at paddy field[J]. Journal of Zhejiang University: Agriculture and Sciences Edition, 2008, 34(6): 662−668
    [17]
    中国土壤学会. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    China Soil Society. Analysis Methods of Soil Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000
    [18]
    任金平. 水稻种子消毒方法[N]. 吉林农村报, 2012-02-10(003)

    REN J P. Disinfection methods of rice seeds[N]. Journal of Jilin Rural, 2012-02-10(003)
    [19]
    吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报: 中英文, 2019, 27(10): 1607−1616

    WU X L, ZHANG S R, PU Y L, et al. Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan Plain[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1607−1616
    [20]
    魏亮, 汤珍珠, 祝贞科, 等. 水稻不同生育期根际与非根际土壤胞外酶对施氮的响应[J]. 环境科学, 2017, 38(8): 3489−3496

    WEI L, TANG Z Z, ZHU Z K, et al. Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J]. Environment Science, 2017, 38(8): 3489−3496
    [21]
    吴杨潇影. 种植模式及氮肥分配对稻田根际与非根际土壤氮素及微生物影响的研究[D]. 杭州: 浙江大学, 2019

    WU Y X Y. Effects of planting and nitrogen fertilizer allocation on rhizosphere and non-rhizosphere nitrogen and microorganisms in paddy field[D]. Hangzhou: Zhejiang University, 2019
    [22]
    NIE S A, LI H, YANG X R, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere[J]. The ISME Journal, 2015, 9(9): 2059−2067 doi: 10.1038/ismej.2015.25
    [23]
    马维娜, 杨京平, 汪华. 不同水分模式分次施氮对水稻根际土壤微生物生态效应的影响[J]. 浙江大学学报: 农业与生命科学版, 2007, 33(2): 184−189

    MA W N, YANG J P, WANG H. Ecological effect of rice rhizosphere microbes under water regimes and nitrogen fertilizer with split application in paddy field[J]. Journal of Zhejiang University: Agriculture and Sciences Edition, 2007, 33(2): 184−189
    [24]
    ZHU B, GUTKNECHT J L M, HERMAN D J, et al. Rhizospherepriming effects on soil carbon and nitrogen mineralization[J]. Soil Biology and Biochemistry, 2014, 76: 183−192 doi: 10.1016/j.soilbio.2014.04.033
    [25]
    BAUDOIN E, BENIZRI E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology & Biochemistry, 2003, 35(9): 1183−1192
    [26]
    张四海, 曹志平, 胡婵娟, 等. 添加秸秆碳源对土壤微生物生物量和原生动物丰富度的影响[J]. 中国生态农业学报, 2011, 19(6): 1283−1288

    ZHANG S H, CAO Z P, HU C J, et al. Effect of added straw carbon on soil microbe and protoze abundance[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1283−1288
    [27]
    ANNI S F, WHALEN J K, SIMPSON M J, et al. Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues[J]. Soil Biology and Biochemistry, 2011, 43(1): 63−69 doi: 10.1016/j.soilbio.2010.09.012
    [28]
    MORITSKKA N, YANAI J, MORI K, et al. Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface[J]. Soil Biology and Biochemistry, 2004, 36(7): 1141−1148 doi: 10.1016/j.soilbio.2004.02.024
    [29]
    WEN X, HU C, SUN X, et al. Research on the nitrogen transformation in rhizosphere of winter wheat (Triticum aestivum) under molybdenum addition[J]. Environmental Science and Pollution Research, 2019, 26(3): 2363−2374 doi: 10.1007/s11356-018-3565-y
    [30]
    朱秋莲, 邢肖毅, 程曼, 等. 宁南山区典型植物根际与非根际土壤碳、氮形态[J]. 应用生态学报, 2013, 24(4): 983−988

    ZHU Q L, XING X Y, CHENG M, et al. Concentrations of different carbon and nitrogen fractions in rhizosphere and non-rhizosphere soils of typical plant species in mountainous area of southern Ningxia, Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 983−988
    [31]
    任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229−235

    REN G D, WANG G F, MA Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229−235
    [32]
    徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究[J]. 草业学报, 2014, 23(2): 140−146 doi: 10.11686/cyxb20140217

    XU G W, LI S, ZHAO Y F, et al. Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice[J]. Acta Prataculturae Sinica, 2014, 23(2): 140−146 doi: 10.11686/cyxb20140217
    [33]
    栗笑阳, 郭夏丽. 不同施氮水平对小麦根际土壤氨氧化微生物的影响[J]. 河南农业科学, 2020, 49(12): 69−76

    LI X Y, GUO X L. Effects of different nitrogen levels on ammonia oxidizing microorganisms in wheat rhizosphere soil[J]. Journal of Henan Agricultural Science, 2020, 49(12): 69−76
    [34]
    王飞, 李清华, 何春梅, 等. 稻秆与紫云英联合还田提高黄泥田氮素利用率和土壤肥力[J]. 植物营养与肥料学报, 2021, 27(1): 66−74

    WANG F, LI Q H, HE C M, et al. Combined returning of milk vetch and rice straw improves fertilizer nitrogen recovery and fertility of yellow-mud paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2021, 27(1): 66−74
    [35]
    HENRIKSEN T M, BRELAND T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999, 31(8): 1121−1134 doi: 10.1016/S0038-0717(99)00030-9
    [36]
    SHAUKAT A A, TIAN X H, WANG D, et al. Decomposition characteristic of maize straw with different carbon to nitrogen (C/N) ratios under various moisture regimes[J]. African Journal of Biotechnology, 2011, 10(50): 10149−10156 doi: 10.5897/AJB10.2261
    [37]
    蔡晓布, 钱成, 张元, 等. 西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J]. 应用生态学报, 2004, (3): 463−468 doi: 10.3321/j.issn:1001-9332.2004.03.021

    CAI X B, QIAN C, ZHANG Y, et al. Microbial characteristics of straw-amended degraded soils in central Tibet and its effect on soil fertility[J]. Chinese Journal of Applied Ecology, 2004, (3): 463−468 doi: 10.3321/j.issn:1001-9332.2004.03.021
    [38]
    VRIES F T D, HOFFLANG E, EEKEREN N V, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry, 2006, 38(8): 2092−2103 doi: 10.1016/j.soilbio.2006.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (358) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return