Volume 29 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG S W, LIN J H, WU Z G, CHEN J, PAN Y J, SHENG X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2002−2012 doi: 10.13930/j.cnki.cjea.210119
Citation: WANG S W, LIN J H, WU Z G, CHEN J, PAN Y J, SHENG X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2002−2012 doi: 10.13930/j.cnki.cjea.210119

The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China

doi: 10.13930/j.cnki.cjea.210119
Funds:  This study was supported by the National Key R&D Program of China (2018YFC0213300), the National Natural Science Foundation of China (41807104), Suzhou Agricultural Science and Technology Innovation Project (SNG2018099, SNG2018097) and Changshu Agricultural Science and Technology Innovation Project (CN202004-3)
More Information
  • Corresponding author: WANG Shuwei, E-mail: swwang@issas.ac.cn
  • Received Date: 2021-02-26
  • Accepted Date: 2021-05-28
  • Available Online: 2021-06-22
  • Publish Date: 2021-12-07
  • .Ammonia (NH3) volatilization is an important nitrogen (N) loss pathway in paddy fields. However, the effects of N fertilizer deep placement, slow-release N fertilizers, and urea inhibitors on NH3 volatilization reduction during the entire rice-growing season remain uncertain. To fill this knowledge gap, we conducted a field experiment with seven treatments: (1) no N application, (2) local broadcasting application of urea at a rate of 300 kg(N)∙hm−2 (SN300), (3) 10% reduction of N from SN300 (SN270), (4) deep placement of basal urea together with the broadcasting of topdressing of urea at tiller and panicle stages of rice, at a total a rate of 270 kg(N)∙hm−2 (DN270), (5) application of urea inhibitor for DN270 (DN270+UI), (6) 10% nitrogen reduction, deep application of basal urea together with the surface application of slow-release N fertilizer (DN270+SR), and (7) application of urease inhibitors for DN270+SR (DN270+SR+UI). Compared with the SN300 treatment, deep placement of basal N fertilizer reduced the cumulative NH3 emissions by 78.2%−85.2% in the basal fertilization period. The combined application of the urease inhibitors in the rice topdressing periods (DN270+UI treatment) reduced the NH3 emissions by 30.4% at the tillering stage and 25.3% at the panicle stage in comparison with the SN300 treatment. Replacing urea with a slow-release N fertilizer (DN270+SR treatment) in the rice topdressing periods reduced NH3 volatilization by 36.4% at the tillering stage and 28.1% at the panicle stage. The cumulative NH3 volatilization changed in the following order: SN300 > SN270 > DN270 > DN270+UI > DN270+SR > DN270+SR+UI. Compared to the local treatment (SN300), DN270+SR+UI significantly reduced NH3 volatilization by 50.9%. There was no significant difference in rice yield among the N fertilizer treatments. NH3 emission intensity per unit rice yield was lowest for the DN270+SR+UI treatment, 52.5% lower than the SN300 treatment. Overall, simultaneous N fertilizer deep placement with slow-release N and urease inhibitors produced more grains with lower environmental costs associated with NH3 emissions. This represents a promising and sustainable management strategy for paddy fields in the Taihu Lake region of China.
  • loading
  • [1]
    KANG Y N, LIU M X, SONG Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2043−2058 doi: 10.5194/acp-16-2043-2016
    [2]
    王书伟, 廖千家骅, 胡玉婷, 等. 我国NH3-N排放量及空间分布变化初步研究[J]. 农业环境科学学报, 2009, 28(3): 619−626 doi: 10.3321/j.issn:1672-2043.2009.03.037

    WANG S W, LIAO Q J H, HU Y T, et al. A preliminary inventory of NH3-N emission and its temporal and spatial distribution of China[J]. Journal of Agro-Environment Science, 2009, 28(3): 619−626 doi: 10.3321/j.issn:1672-2043.2009.03.037
    [3]
    PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3−8 doi: 10.1626/pps.12.3
    [4]
    FILLERY I R P, VLEK P L G. Reappraisal of the significance of ammonia volatilization as an N loss mechanism in flooded rice fields[M]//DETTA S K, PATRICK W H. Nitrogen Economy of Flooded Rice Soils. Developments in Plant and Soil Sciences. Dordreche: Springer Martinus Nijhoff Publishers, 1986: DOI: 10.1007/978-94-009-4428-2_4.
    [5]
    WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the Total Environment, 2017, 593/594: 347−356 doi: 10.1016/j.scitotenv.2017.03.159
    [6]
    ZHAO X, XIE Y X, XIONG Z Q, et al. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu Lake Region, China[J]. Plant and Soil, 2009, 319(1/2): 225−234
    [7]
    JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS, 2009, 106(9): 3041−3046 doi: 10.1073/pnas.0813417106
    [8]
    王书伟, 颜晓元, 单军, 等. 利用膜进样质谱法测定不同氮肥用量下反硝化氮素损失[J]. 土壤, 2018, 50(4): 664−673

    WANG S W, YAN X Y, SHAN J, et al. Quantitative determination of N loss through denitrification under different N fertilizer application rates by membrane inlet mass spectrometry(MIMS)[J]. Soils, 2018, 50(4): 664−673
    [9]
    BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11): 8092−8131 doi: 10.1007/s11356-013-2051-9
    [10]
    FANG M, CHAN C K, YAO X H. Managing air quality in a rapidly developing nation: China[J]. Atmospheric Environment, 2009, 43(1): 79−86 doi: 10.1016/j.atmosenv.2008.09.064
    [11]
    WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13630−13635 doi: 10.1073/pnas.1616540113
    [12]
    WU Y Y, GU B J, ERISMAN J W, et al. PM2.5 pollution is substantially affected by ammonia emissions in China[J]. Environmental Pollution, 2016, 218: 86−94 doi: 10.1016/j.envpol.2016.08.027
    [13]
    LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80−90 doi: 10.1016/j.fcr.2015.09.011
    [14]
    YANG Y, LI N, NI X Y, et al. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields[J]. Journal of Cleaner Production, 2020, 244: 118745 doi: 10.1016/j.jclepro.2019.118745
    [15]
    YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [16]
    侯朋福, 薛利祥, 俞映倞, 等. 缓控释肥侧深施对稻田氨挥发排放的控制效果[J]. 环境科学, 2017, 38(12): 5326−5332

    HOU P F, XUE L X, YU Y L, et al. Control effect of side deep fertilization with slow-release fertilizer on ammonia volatilization from paddy fields[J]. Environmental Science, 2017, 38(12): 5326−5332
    [17]
    彭玉净, 田玉华, 尹斌. 添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响[J]. 中国生态农业学报, 2012, 20(1): 19−23 doi: 10.3724/SP.J.1011.2012.00019

    PENG Y J, TIAN Y H, YIN B. Effects of NBPT urease inhibitor on ammonia volatilization in paddy fields with wheat straw application[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 19−23 doi: 10.3724/SP.J.1011.2012.00019
    [18]
    周平遥, 张震, 王华, 等. 不同深施肥方式对稻田氨挥发及水稻产量的影响[J]. 农业环境科学学报, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441

    ZHOU P Y, ZHANG Z, WANG H, et al. Effects of deep fertilization methods on ammonia volatilization and rice yield in paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441
    [19]
    邓美华, 尹斌, 张绍林, 等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005

    DENG M H, YIN B, ZHANG S L, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005
    [20]
    CHEN A Q, LEI B K, HU W L, et al. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China[J]. Nutrient Cycling in Agroecosystems, 2015, 101(1): 139−152 doi: 10.1007/s10705-014-9660-7
    [21]
    LI P F, LU J W, WANG Y, et al. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea[J]. Agriculture, Ecosystems & Environment, 2018, 251: 78−87
    [22]
    TIAN G M, CAO J L, CAI Z C et al. Ammonia volatilization from winter wheat field top dressed with urea[J]. Pedosphere, 1998, 8(4): 331−336
    [23]
    ZHAO M, TIAN Y H, MA Y C, et al. Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap[J]. Agriculture, Ecosystems & Environment, 2015, 203: 36−45
    [24]
    赵淼, 田玉华, 张敏, 等. 改善农学管理措施减少太湖稻麦轮作NH3和NO排放[J]. 土壤, 2015, 47(5): 836−841

    ZHAO M, TIAN Y H, ZHANG M, et al. Improving agronomic practices to reduce ammonia and nitric oxide emissions from rice-wheat rotation field in Tai Lake Region, China[J]. Soils, 2015, 47(5): 836−841
    [25]
    田光明, 蔡祖聪, 曹金留, 等. 镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J]. 土壤学报, 2001, 38(3): 324−332 doi: 10.3321/j.issn:0564-3929.2001.03.012

    TIAN G M, CAI Z C, CAO J L, et al. Ammonia volatilization from paddy field and its affecting factors in Zhenjiang hilly region[J]. Acta Pedologica Sinica, 2001, 38(3): 324−332 doi: 10.3321/j.issn:0564-3929.2001.03.012
    [26]
    胡安永, 孙星, 刘勤, 等. 太湖地区不同轮作方式对稻田氨挥发和水稻产量的影响[J]. 水土保持学报, 2013, 27(6): 275−279 doi: 10.3969/j.issn.1009-2242.2013.06.053

    HU A Y, SUN X, LIU Q, et al. Influence of different rotations on ammonia volatilization and rice yields of paddy fields in Taihu Lake Region[J]. Journal of Soil and Water Conservation, 2013, 27(6): 275−279 doi: 10.3969/j.issn.1009-2242.2013.06.053
    [27]
    MOHANTY S K, SINGH U, BALASUBRAMANIAN V, et al. Nitrogen deep-placement technologies for productivity, profitability, and environmental quality of rainfed lowland rice systems[J]. Nutrient Cycling in Agroecosystems, 1998, 53(1): 43−57 doi: 10.1023/A:1009731922431
    [28]
    XU J Z, LIAO L X, TAN J Y, et al. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: a pots experiment[J]. Soil and Tillage Research, 2013, 126: 169−176 doi: 10.1016/j.still.2012.07.005
    [29]
    HUDA A, GAIHRE Y K, ISLAM M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems[J]. Nutrient Cycling in Agroecosystems, 2016, 104(1): 53−66 doi: 10.1007/s10705-015-9758-6
    [30]
    FILLERY I R P, SIMPSON J R, DE DATTA S K. Influence of field environment and fertilizer management on ammonia loss from flooded rice[J]. Soil Science Society of America Journal, 1984, 48(4): 914−920 doi: 10.2136/sssaj1984.03615995004800040043x
    [31]
    GUO C, REN T, LI P F, et al. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea[J]. Environmental Science and Pollution Research, 2019, 26(3): 2569−2579 doi: 10.1007/s11356-018-3792-2
    [32]
    HUANG S, LV W, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis[J]. Field Crops Research, 2016, 192: 118−125 doi: 10.1016/j.fcr.2016.04.023
    [33]
    胡瞒瞒, 董文旭, 王文岩, 等. 华北平原氮肥周年深施对冬小麦-夏玉米轮作体系土壤氨挥发的影响[J]. 中国生态农业学报(中英文), 2020, 28(12): 1880−1889

    HU M M, DONG W X, WANG W Y, et al. The effects of deep application of nitrogen fertilization on ammonia volatilization in a winter wheat/summer maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1880−1889
    [34]
    ZHANG X M, WU Y Y, LIU X J, et al. Ammonia emissions may be substantially underestimated in China[J]. Environmental Science & Technology, 2017, 51(21): 12089−12096
    [35]
    TI C P, XIA L L, CHANG S X, et al. Potential for mitigating global agricultural ammonia emission: a meta-analysis[J]. Environmental Pollution, 2019, 245: 141−148 doi: 10.1016/j.envpol.2018.10.124
    [36]
    STOKSTAD E. Ammonia pollution from farming may exact hefty health costs[J]. Science, 2014, 343(6168): 238 doi: 10.1126/science.343.6168.238
    [37]
    XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917−1925 doi: 10.1111/gcb.13455
    [38]
    ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Ammonia volatilization and nitrogen retention: how deep to incorporate urea?[J]. Journal of Environmental Quality, 2013, 42(6): 1635−1642 doi: 10.2134/jeq2013.05.0192
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (320) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return